Scrapy教程

随笔3个月前发布 后岸
64 0 0

Scrapy教程

原文地址https://doc.scrapy.org/en/latest/intro/tutorial.html

此教程我们假设你已经装好了Scrapy,如果没有请查看安装指南.。

我们将要抓取 quotes.toscrape.com网站,这个网站展示了很多名人名言。

此教程指导你完成一下任务:

  1. 新建一个Scrapy工程
  2. 编写一个spider爬网站提取数据
  3. 用命令行导出爬取的数据
  4. 改变spider递归爬去链接
  5. 使用spider参数

Scrapy是python编写。如果你是python新手,你可能先要知道这门语言大概是什么样的,才能直到Scrapy的更多东西。

如果你熟悉其他编程语言,想快速学习python,我们建议你使用 Dive Into Python 3或者Python Tutorial。

如果你刚接触编程语言想学习python,可以使用Learn Python The Hard Way。或者看this list of Python resources for non-programmers。

创建一个项目

在抓取之前,你必须构建一个新的Scrapy project。到你先要存储的目录运行:
scrapy startproject tutorial
这将创建一个含有以下内容的tutorial目录:

  1. tutorial/

  2. scrapy.cfg # deploy configuration file

  3. tutorial/ # project's Python module, you'll import your code from here

  4. __init__.py

  5. items.py # project items definition file

  6. pipelines.py # project pipelines file

  7. settings.py # project settings file

  8. spiders/ # a directory where you'll later put your spiders

  9. __init__.py

我们第一个爬虫

蜘蛛是你定义的一些去爬取网站信息的类。他们必须继承自scrapy.Spider,定义初始请求,如何选择页面爬取这是可选的,以及如何解析下载页面的内容提取数据。

这是我们第一个蜘蛛的代码,把它保存在tutorial/spiders目录的 quotes_spider.py 中文件。

  1. import scrapy

  2. class QuotesSpider(scrapy.Spider):

  3. name = "quotes"

  4. def start_requests(self):

  5. urls = [

  6. 'http://quotes.toscrape.com/page/1/',

  7. 'http://quotes.toscrape.com/page/2/',

  8. ]

  9. for url in urls:

  10. yield scrapy.Request(url=url, callback=self.parse)

  11. def parse(self, response):

  12. page = response.url.split("/")[-2]

  13. filename = 'quotes-%s.html' % page

  14. with open(filename, 'wb') as f:

  15. f.write(response.body)

  16. self.log('Saved file %s' % filename)

如你所见,我们的蜘蛛继承自 scrapy.Spider 并且定义了一些属性和方法。

  • name:标识这个蜘蛛。在一个项目中必须时唯一的,意味着你不能给不同的蜘蛛设置相同的名称。
  • start_requests():必须返回一个请求的迭代(可以返回一个请求的列表或者写一个生成器函数),蜘蛛从这里开始爬去。子序列请求从这些初始的请求自动生成。
  • parse():在每个请求的相应完成时调用的方法。response参数是TextResponse的一个实例,拥有页面内容和更多有用的函数操作。

parse()函数通常解析响应内容,把抓到的数据提取为dicts随后查找新的URLS创建新的请求。

如何运行我们的蜘蛛

为了让我们的蜘蛛工作,到项目的最顶层目录运行:

scrapy crawl quotes

这条命令运行我们刚添加的名为quotes的蜘蛛。它发送一些请求到quotes.toscrape.com。你将得到如下输出:

  1. ... (omitted for brevity)

  2. 2016-12-16 21:24:05 [scrapy.core.engine] INFO: Spider opened

  3. 2016-12-16 21:24:05 [scrapy.extensions.logstats] INFO: Crawled 0 pages (at 0 pages/min), scraped 0 items (at 0 items/min)

  4. 2016-12-16 21:24:05 [scrapy.extensions.telnet] DEBUG: Telnet console listening on 127.0.0.1:6023

  5. 2016-12-16 21:24:05 [scrapy.core.engine] DEBUG: Crawled (404) <GET http://quotes.toscrape.com/robots.txt> (referer: None)

  6. 2016-12-16 21:24:05 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://quotes.toscrape.com/page/1/> (referer: None)

  7. 2016-12-16 21:24:05 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://quotes.toscrape.com/page/2/> (referer: None)

  8. 2016-12-16 21:24:05 [quotes] DEBUG: Saved file quotes-1.html

  9. 2016-12-16 21:24:05 [quotes] DEBUG: Saved file quotes-2.html

  10. 2016-12-16 21:24:05 [scrapy.core.engine] INFO: Closing spider (finished)

  11. ...

现在,检查当前目录。你会注意到创建了两个新文件quotes-1.html 和quotes-2.html,里面包含了urls的响应数据。

提示

如果你奇怪为什么我们还没有解析HTML,淡定,很快会讲到。

内部机制是什么

Scrapy调用蜘蛛的start_requests方法,一旦接收到一个响应,立马初始化Response对象然后调用请求的回掉函数(在此例中,时parse()函数)把response对象作为参数。

start_requests函数简写

作为start_requests函数的替代实现,你可以仅定义一个名为start_urls的urls列表属性。词列表将在默认的start_requests()函数实现中被使用为你的蜘蛛创建出事请求。

  1. import scrapy

  2. class QuotesSpider(scrapy.Spider):

  3. name = "quotes"

  4. start_urls = [

  5. 'http://quotes.toscrape.com/page/1/',

  6. 'http://quotes.toscrape.com/page/2/',

  7. ]

  8. def parse(self, response):

  9. page = response.url.split("/")[-2]

  10. filename = 'quotes-%s.html' % page

  11. with open(filename, 'wb') as f:

  12. f.write(response.body)

urls的每次请求都将调用parse()函数,即使我们没有显示告诉Scrapy这么做。这是因为parse()是Scrapy在没有显示给回掉函数赋值时的默认回掉函数。

提取数据

最好的学习使用Scrapy的选择器的方式是使用Scrapy shell。

scrapy shell 'http://quotes.toscrape.com/page/1/'

提示

记住使用单引号包裹地址否则包含参数(如&字符)将不会工作

在windows中,使用双引号

你将看到:

  1. [ ... Scrapy log here ... ]

  2. 2016-09-19 12:09:27 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://quotes.toscrape.com/page/1/> (referer: None)

  3. [s] Available Scrapy objects:

  4. [s] scrapy scrapy module (contains scrapy.Request, scrapy.Selector, etc)

  5. [s] crawler <scrapy.crawler.Crawler object at 0x7fa91d888c90>

  6. [s] item {}

  7. [s] request <GET http://quotes.toscrape.com/page/1/>

  8. [s] response <200 http://quotes.toscrape.com/page/1/>

  9. [s] settings <scrapy.settings.Settings object at 0x7fa91d888c10>

  10. [s] spider <DefaultSpider 'default' at 0x7fa91c8af990>

  11. [s] Useful shortcuts:

  12. [s] shelp() Shell help (print this help)

  13. [s] fetch(req_or_url) Fetch request (or URL) and update local objects

  14. [s] view(response) View response in a browser

  15. >>>

使用shell,你可以使用response对象的CSS 函数选择元素。

  1. >>> response.css('title')

  2. [<Selector xpath='descendant-or-self::title' data='<title>Quotes to Scrape</title>'>]

response.css('title')的运行结果是一个名为SelectorList的list-like对象,它是包含XML/HTML元素的 Selector 对象列表允许你进一步查询选择和提取数据。

为了导出title的文本,你可以:

  1. >>> response.css('title::text').extract()

  2. ['Quotes to Scrape']

此处有两点要注意:一、我们添加了::text到CSS查询中,意味着我们只选择了<title>玄素的text元素。如果我们不指定::text,我们会得到含有标记的整个title元素。

  1. >>> response.css('title').extract()

  2. ['<title>Quotes to Scrape</title>']

二、.extract()调用结果是一个列表,因为我们处理的是SelectorList对象。当你知道你只需要第一个结果时,你可以:

  1. >>> response.css('title::text').extract_first()

  2. 'Quotes to Scrape'

作为一种替换方法,你可以这么写:

  1. >>> response.css('title::text')[0].extract()

  2. 'Quotes to Scrape'

然而,使用extract()extract_first()方法避免了IndexError并且在没有找到任何匹配元素时返回None

这有个教训,对于大多数抓取代码,你想要在页面不能找到元素时有伸缩性,以至于即使在抓取数据时发生错误,你依然可以得到一些数据。

除了extract()extract_first()方法,你还可以使用re()的正则表达式方法。

  1. >>> response.css('title::text').re(r'Quotes.*')

  2. ['Quotes to Scrape']

  3. >>> response.css('title::text').re(r'Qw+')

  4. ['Quotes']

  5. >>> response.css('title::text').re(r'(w+) to (w+)')

  6. ['Quotes', 'Scrape']

为了找到适当的CSS选择器,你可从shell中使用view(response)浏览响应界面。你可以使用浏览器开发工具或插件如Firebug(此处请看使用Firebug 抓取和使用FireFox抓取)。

选择器小工具也是一个查找CSS选择器很好的工具,可以可视化的查找元素,可在很多浏览器中工作。

XPATH:简介

除了css,Scrapy选择器也支持XPath表达式:

  1. >>> response.xpath('//title')

  2. [<Selector xpath='//title' data='<title>Quotes to Scrape</title>'>]

  3. >>> response.xpath('//title/text()').extract_first()

  4. 'Quotes to Scrape'

XPATH表达式很强大,是Scrapy选择器的基础。事实上,CSS选择器在内部转换为Xpath。你可以在shell查看文本选择器的对象类型。

尽管不如CSS选择器流行,Xpath表达式却更强大。它除了可以导航到结构也可以查找内容。使用xpath,你能这么选择如:选择包含Next Page的文本连接。这使得xpath非常适合抓取,我们鼓励你学习Xpath,即使你已经知道如何构造CSS选择器,它会更简单。

我们在这不会涉及XPath太多,你可以阅读使用XPath.为了学习Xpath,我们建议通过例子学习XPath教程,和如何使用XPath思考。

提取quotes和authors

现在你知道了一点关于选择和提起的知识了,让我们完善我们的spider,写代码从网站页面提取quotes。

http://quotes.toscrape.com中的每个quote的HTML形式类似下面:

  1. <div class="quote">

  2. <span class="text">“The world as we have created it is a process of our

  3. thinking. It cannot be changed without changing our thinking.”</span>

  4. <span>

  5. by <small class="author">Albert Einstein</small>

  6. <a href="/author/Albert-Einstein">(about)</a>

  7. </span>

  8. <div class="tags">

  9. Tags:

  10. <a class="tag" href="/tag/change/page/1/">change</a>

  11. <a class="tag" href="/tag/deep-thoughts/page/1/">deep-thoughts</a>

  12. <a class="tag" href="/tag/thinking/page/1/">thinking</a>

  13. <a class="tag" href="/tag/world/page/1/">world</a>

  14. </div>

  15. </div>

我们打开scrapy shell并做一些解决如何提取我们想要的数据的事。

$ scrapy shell 'http://quotes.toscrape.com'

我们使用下面语法得到一系列的quote元素的选择器:

>>> response.css("div.quote")

查询返回的每个选择器我们还可以查询它们的子元素。我们把第一个选择器赋值给变量,这样我们可以直接运行指定的quote选择器。

quote = response.css("div.quote")[0]

现在我们从quote导出title,authortags使用我们刚创建的quote对象。当你知道你只需要第一个结果时,你可以:

  1. >>> title = quote.css("span.text::text").extract_first()

  2. >>> title

  3. '“The world as we have created it is a process of our thinking. It cannot be changed without changing our thinking.”'

  4. >>> author = quote.css("small.author::text").extract_first()

  5. >>> author

  6. 'Albert Einstein'

考虑到标签是字符串列表,我们可以使用.extract()方法获取他们。

  1. >>> tags = quote.css("div.tags a.tag::text").extract()

  2. >>> tags

  3. ['change', 'deep-thoughts', 'thinking', 'world']

解决了如何导出每个,我们现在可迭代所有quotes元素把他们保存到Python字典中。

  1. >>> for quote in response.css("div.quote"):

  2. ... text = quote.css("span.text::text").extract_first()

  3. ... author = quote.css("small.author::text").extract_first()

  4. ... tags = quote.css("div.tags a.tag::text").extract()

  5. ... print(dict(text=text, author=author, tags=tags))

  6. {'tags': ['change', 'deep-thoughts', 'thinking', 'world'], 'author': 'Albert Einstein', 'text': '“The world as we have created it is a process of our thinking. It cannot be changed without changing our thinking.”'}

  7. {'tags': ['abilities', 'choices'], 'author': 'J.K. Rowling', 'text': '“It is our choices, Harry, that show what we truly are, far more than our abilities.”'}

  8. ... a few more of these, omitted for brevity

  9. >>>

在我们的蜘蛛里导出数据

让我们回到蜘蛛。直到现在,仍然没有导出任何数据,只是把HTML页面保存到本地文件中。我们把导出逻辑集成到spider中。

一个Scrapy蜘蛛通常包含多个页面抓取数据的字典。这样,我们可以使用在回调函数中使用yieldPython关键字,如下所示:

  1. import scrapy

  2. class QuotesSpider(scrapy.Spider):

  3. name = "quotes"

  4. start_urls = [

  5. 'http://quotes.toscrape.com/page/1/',

  6. 'http://quotes.toscrape.com/page/2/',

  7. ]

  8. def parse(self, response):

  9. for quote in response.css('div.quote'):

  10. yield {

  11. 'text': quote.css('span.text::text').extract_first(),

  12. 'author': quote.css('span small::text').extract_first(),

  13. 'tags': quote.css('div.tags a.tag::text').extract(),

  14. }

如果你运行这个蜘蛛,它把导出数据输出到日志中:

  1. 2016-09-19 18:57:19 [scrapy.core.scraper] DEBUG: Scraped from <200 http://quotes.toscrape.com/page/1/>

  2. {'tags': ['life', 'love'], 'author': 'André Gide', 'text': '“It is better to be hated for what you are than to be loved for what you are not.”'}

  3. 2016-09-19 18:57:19 [scrapy.core.scraper] DEBUG: Scraped from <200 http://quotes.toscrape.com/page/1/>

  4. {'tags': ['edison', 'failure', 'inspirational', 'paraphrased'], 'author': 'Thomas A. Edison', 'text': "“I have not failed. I've just found 10,000 ways that won't work.”"}

保存抓取到的数据

最简单的保存抓取数据是使用Feed exports, 使用下面的命令行:

scrapy crawl quotes -o quotes.json

这将生成一个quotes.json文件包含所有抓取像序列化为json。

由于历史原因,Scrapy使用追加而不是覆盖,如果你运行两次此命令而没有在第二次删除之前的文件,你将得到一个损毁的JSON文件。

你也可以使用其他格式,如Json Lines

scrapy crawl quotes -o quotes.jl

Json Lines格式很有用,因为她是stream-like。你可以往里面轻松的添加新纪录。他没有上面的JSON文件的问题当你运行两次的时候。同时,因为每条记录是一行,你可以处理超大文件而不必担心内存问题,有很多工具如JQ可在命令行处理。

在小项目里(例如此教程),这样就够了。然而,如果你想处理更复杂的抓取项,你可以编写[Item 管道]。当创建项目的时候,会在tutorial/pipelines.py构建一个Item 管道文件。这样如果你只是想保存抓取到的项,就不需要实现任何的Item管道。

下面的连接

假如你不想仅抓取http://quotes.toscrape.com网站中的两个页面,而是想抓取所有的网站页面。

现在你知道如何从页面抓取数据,让我们看看下面的连接如何得到。

首先从页面中提取我们想要的连接。查看我们的页面,我们可以看见页面中的下一页连接如下所示标志:

  1. <ul class="pager">

  2. <li class="next">

  3. <a href="/page/2/">Next <span aria-hidden="true">→</span></a>

  4. </li>

  5. </ul>

试着在shell中提取它:

  1. >>> response.css('li.next a').extract_first()

  2. '<a href="/page/2/">Next <span aria-hidden="true">→</span></a>'

这得到了整个anchor元素,但是我们想要href属性。为了如此,Scrapu提供了CSS的扩展使你可以选择属性内容,如下:

  1. >>> response.css('li.next a::attr(href)').extract_first()

  2. '/page/2/'

现在我们的spider被改成了可以跟踪下一页从中导出数据:

  1. import scrapy

  2. class QuotesSpider(scrapy.Spider):

  3. name = "quotes"

  4. start_urls = [

  5. 'http://quotes.toscrape.com/page/1/',

  6. ]

  7. def parse(self, response):

  8. for quote in response.css('div.quote'):

  9. yield {

  10. 'text': quote.css('span.text::text').extract_first(),

  11. 'author': quote.css('span small::text').extract_first(),

  12. 'tags': quote.css('div.tags a.tag::text').extract(),

  13. }

  14. next_page = response.css('li.next a::attr(href)').extract_first()

  15. if next_page is not None:

  16. next_page = response.urljoin(next_page)

  17. yield scrapy.Request(next_page, callback=self.parse)

现在,导出数据后,parse()函数查找下一页,使用urljoin构建一个绝对路径URL并生成一个到下一页的新请求,把下一页的请求注册为回调使得蜘蛛可以爬到所有的页面。

这是Scrapy跟踪页面的机制:当你在回调中生成一个请求对象,Scrapy会安排请求发送并注册回调函数在请求结束时运行。

使用这些,你可以构建复杂的爬虫系统,链接规则可以自定义,根据访问页面导出各种各样的数据。

在我们的例子中,它创建了一系列循环跟踪所有的链接到下一页直到找不到任何连接——方便爬取博客,论坛或其他的导航网站。

更多示例和模式

这是另一个蜘蛛用来解释回调和跟踪连接,这次抓取作者信息:

  1. import scrapy

  2. class AuthorSpider(scrapy.Spider):

  3. name = 'author'

  4. start_urls = ['http://quotes.toscrape.com/']

  5. def parse(self, response):

  6. # follow links to author pages

  7. for href in response.css('.author+a::attr(href)').extract():

  8. yield scrapy.Request(response.urljoin(href),

  9. callback=self.parse_author)

  10. # follow pagination links

  11. next_page = response.css('li.next a::attr(href)').extract_first()

  12. if next_page is not None:

  13. next_page = response.urljoin(next_page)

  14. yield scrapy.Request(next_page, callback=self.parse)

  15. def parse_author(self, response):

  16. def extract_with_css(query):

  17. return response.css(query).extract_first().strip()

  18. yield {

  19. 'name': extract_with_css('h3.author-title::text'),

  20. 'birthdate': extract_with_css('.author-born-date::text'),

  21. 'bio': extract_with_css('.author-description::text'),

  22. }

蜘蛛从主页面开始,使用parse_author回调函数跟踪所有的作者页面连接,同时用parse回调函数跟踪导航连接如我们之前看到的。

parse_author回调函数定义了一个帮助方法,从CSS查询提取和清理并使用作者数据生成Python dict。

另一件关于蜘蛛的有趣的事情是,即使有很多名言出自同一作者,我们也不必担心多次访问相同作者的页面。默认情况下,Scrapy过滤掉重复的已访问的请求地址,避免程序太多次点击服务器的问题。这是用DUPEFILTER_CLASS配置。

希望你已理解了Scrapy如何跟踪页面和回调的机制。

这个程序利用跟踪链接机制实现,查看CrawlSpider类,它是一个通用的蜘蛛实现了一个小的规则引擎,你可以在这之上编写自己的爬虫。

转载于:https://www.cnblogs.com/ximengchj/p/6423736.html

© 版权声明

相关文章

暂无评论

您必须登录才能参与评论!
立即登录
暂无评论...